

JAP-003-001105

Seat No.

B. Sc. (Sem. I) (CBCS) Examination

November - 2019

M - 101: Geometry & Calculus (Old Course)

> Faculty Code: 003 Subject Code: 001105

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

All questions are compulsory. Instructions: (1)

- Right hand side digit indicate the marks. (2)
- Answer the following questions in short: 1

20

- (1) Find the polar form of the equation $x^2 + y^2 = 9$.
- Write the equation of a sphere having center (a,b,c)(2) and radius r.
- The Cartesian coordinate of polar point $(2,\pi)$ (3)
- Find the center and radius of the sphere **(4)** $x^2 + y^2 + z^2 - 2x - 2y - 2z - 1 = 0$.
- If $y = \sin(x)$, then find $\frac{d^n y}{dx^n}$.

(6)
$$\frac{d^5x^5}{dx^5} = \underline{\hspace{1cm}}$$

- The set N is lower bounded. (True/False)
- The function $f(x) = 6(x-2)^2$, x < 2 is _____ (8) (Increasing / Decreasing)
- Evaluate $\lim_{x \to 0} \frac{\sin x}{x \cos x}$ (9)

- (10) Write the indeterminate form of $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$.
- (11) Find the integrating factor of the differential equation $\frac{dy}{dx} = x + y.$

- (12) Write Clairaut's differential equation.
- (13) If m_1, m_2 are distinct real roots and m_3, m_4 are equal real roots of auxiliary equation of homogeneous differential equation, then write the solution.
- (14) $\frac{1}{D}x^3 =$ _____
- (15) $(1+D)^{-1} =$
- (16) Find $\int_{0}^{\frac{\pi}{2}} \cos^{10}(x) dx.$
- (17) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^4 x dx.$
- (18) $\frac{1}{f(D^2)}\cos ax = \underline{\qquad}, \text{ provided } f(-a^2) \neq 0.$
- (19) Define first order first degree homogeneous differential equation.
- (20) State the alternative form of Lagrange's mean value theorem.
- 2 (A) Attempt any three out of six:
- 6 at the distance
- (1) Find the path of the point which is at the distance 3 from the polar point $\left(5, \frac{\pi}{2}\right)$.
- (2) Find the equation of a sphere having A(2,-3,4) and B(-2,3,-4) as extemities of diameter.
- (3) Derive the n^{th} derivative of cos(ax + b).
- (4) State Cauchy's mean value theorem and derive Lagrange's mean value theorem from it.
- (5) Show that Maclaurin's series expansion of e^x is $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$, for all $x \in \mathbb{R}$.
- (6) If $f(x) = \frac{x \cos x \log(x+1)}{x^2}$, then show that $\lim_{x \to 0} f(x) = \frac{1}{2}.$

(B) Attempt any three out of six:

- (1) Find the equation of the circle in polar coordinate system whose tangent is the initial line.
- (2) Find approximate value of $\log_{10} 73.55$, correct up to 6 decimal places, where $\log_{10} 73 = 1.863323$, $\log_{10} e = 0.43429$.
- (3) Derive the condition for the equation $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0 \text{ to be a sphere.}$
- (4) If $y = e^{ax} \sin(bx + c)$, then find $\frac{d^n y}{dx^n}$.
- (5) Show that $\lim_{x \to a} \frac{\log(x-a)}{\log(e^x e^a)} = 1.$
- (6) Verify Lagrange's mean value theorem for the function $f(x) = x^2 + x$, for $x \in [0, 1]$.
- (C) Attempt any two out of five:

10

- (1) Prove that the plane x + 2y z = 4 cuts the sphere $x^2 + y^2 + z^2 x + z 2 = 0$ in a circle of radius unity and find the equation sphere which has this circle for one of the great circles.
- (2) State and prove Libnitz's theorem.
- (3) State and prove Roll's mean value theorem.
- (4) Show the $e^{\sin^{-1}x} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$
- (5) Show that $\frac{v-u}{1+v^2} < \tan^{-1} v \tan^{-1} u < \frac{v-u}{1+u^2}, 0 < u < v \text{ and}$ deduct $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} < \frac{4}{3} \frac{\pi}{4} + \frac{1}{6}$.

3 (A) Attempt any three out of six:

6

- (1) Solve $(D^4 + 2D^2 + 1)y = 0$.
- (2) Solve $\frac{dy}{dx} + x \sin(2y) = x^3 \cos^2 y$.

(3) Solve
$$\left(x^2 - ay\right)dx + \left(y^2 - ax\right)dy = 0$$
.

(4) Solve
$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 6y = e^{2x}$$
.

- (5) Find particular integral of $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log(x)}{x^2}$.
- (6) Find the general solution of (y px)(p-1) = 0.
- (B) Attempt any three out of six:

(1) Solve
$$\frac{d^2y}{dx^2} - 11\frac{dy}{dx} + 18y = e^{7x}$$
.

(2) Solve
$$x^2 \frac{d^2 y}{dx^2} + 7x \frac{dy}{dx} + 5y = x^5$$
.

- (3) Solve $x^2(y px) = yp^2$.
- (4) Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{\left(a^{2}-x^{2}\right)}} dx.$
- (5) Solve $y 2px = \tan^{-1}(xp^2)$.
- (6) Find particular integral of $(D^2 + 9)y = e^{2x} + 2x$.
- (C) Attempt any two out of five:

(1) Solve
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 2\log(x)$$
.

(2) Solve
$$x^2 \frac{d^2 y}{d x^2} + y = 3x^2$$
.

- (3) Find the solution first order linear differential equation.
- (4) Find the reduction formula for $\int \sin^m x \cdot con^n x dx$, where $m, n \in \mathbb{N}$
- (5) State and prove the necessary and sufficient condition for the differential equation M(x, y) dx + N(x, y) dy = 0 to be exact.

9

10